12. Gauss' Theorem

Gauss' Theorem
Let VV be a nice solid region in R3\mathbb{R}^3 with a nice properly oriented boundary, V\partial V, and let F\vec F be a nice vector field on VV. Then VFdV=VFdS \iiint_V \vec\nabla\cdot\vec F\,dV =\iint_{\partial V} \vec F\cdot d\vec S The outer boundary must be oriented outward while any inner boundaries must be oriented inward. This means that all pieces of the boundary are oriented away from the solid.

Exercises

  1. Consider the volume integral HFdV\displaystyle \iiint_{H}\vec{\nabla}\cdot\vec{F}\,dV over a hemisphere of radius of 44 to the right of y=0y=0 where 0θπ0 \le \theta \le \pi and F=0,y4,0\vec{F}=\left\langle 0,\dfrac{y}{4},0\right\rangle.

    Hemisphere Radius 4
    1. Express the volume integral as two surface integrals using Gauss' Theorem

      Answer

      HF dV=hemiFdS+diskFdS\begin{aligned} \iiint_{H}\vec{\nabla}\cdot \vec{F}\ dV &=\iint_{\text{hemi}}\vec{F}\cdot d\vec{S} +\iint_{\text{disk}}\vec{F}\cdot d\vec{S} \\ \end{aligned}

      [×]

      Solution

      Gauss' Theorem tells us that the volume integral can be computed as the surface integral over the boundary. Here the boundary consists of two surfaces:
      (1) the hemisphere of ρ=4\rho=4 with y0y \ge 0 which may be parameterized by Rhemi(θ,ϕ)=(4sinϕcosθ,4sinϕsinθ,4cosϕ) R_{\text{hemi}}\left(\theta,\phi\right) =\left(4\sin\phi\cos\theta,4\sin\phi\sin\theta,4\cos\phi\right) for 0ϕπ0 \le \phi \le \pi and 0θπ0 \le \theta \le \pi and
      (2) the disk in the plane y=0y=0 which may be parameterized by Rdisk(r,θ)=(rcosθ,0,rsinθ) R_{\text{disk}}\left(r,\theta\right) =\left(r\cos\theta,0,r\sin\theta\right) for 0r40 \le r \le 4 and 0θ2π0 \le \theta \le 2\pi. So the volume integral becomes: HF dV=hemiFdS+diskFdS\begin{aligned} \iiint_{H}\vec{\nabla}\cdot \vec{F}\ dV &=\iint_{\text{hemi}}\vec{F}\cdot d\vec{S} +\iint_{\text{disk}}\vec{F}\cdot d\vec{S} \\ \end{aligned}

      [×]
    2. Compute each surface integral and the total boundary integral.

      Answer

      hemiFdS=323πdiskFdS=0\begin{aligned} \iint_{\text{hemi}}\vec{F}\cdot d\vec{S} &=\dfrac{32}{3}\pi \\ \iint_{\text{disk}}\vec{F}\cdot d\vec{S} &=0 \end{aligned}
      HF dV=HFdS=hemiFdS+diskFdS=323π\begin{aligned} \iiint_{H} &\vec{\nabla}\cdot \vec{F}\ dV =\iint_{\partial H}\vec{F}\cdot d\vec{S} \\ &=\iint_{\text{hemi}}\vec{F}\cdot d\vec{S} + \iint_{\text{disk}}\vec{F}\cdot d\vec{S} =\dfrac{32}{3}\pi \end{aligned}

      [×]

      Solution

      Hemisphere:  The hemisphere is Rhemi(θ,ϕ)=(4sinϕcosθ,4sinϕsinθ,4cosϕ) R_{\text{hemi}}\left(\theta,\phi\right) =\left(4\sin\phi\cos\theta,4\sin\phi\sin\theta,4\cos\phi\right) for 0ϕπ0 \le \phi \le \pi and 0θπ0 \le \theta \le \pi. The normal is: N=eϕ×eθ=ı^ȷ^k^4cosϕcosθ4cosϕsinθ4sinϕ4sinϕsinθ4sinϕcosθ0=ı^(16sin2ϕcosθ)ȷ^(16sin2ϕsinθ)+k^(16sinϕcosϕcos2θ+16sinϕcosϕsin2θ)=16sin2ϕcosθ,16sin2ϕsinθ,16sinϕcosϕ\begin{aligned} \vec{N}&=\vec{e}_{\phi }\times \vec{e}_{\theta }= \begin{vmatrix} \hat \imath & \hat \jmath & \hat k \\ 4\cos\phi \cos\theta & 4\cos\phi \sin\theta & -4\sin\phi \\ -4\sin\phi \sin\theta & 4\sin\phi \cos\theta & 0 \end{vmatrix} \\ &=\hat \imath\left(16\sin^{2}\phi\cos\theta\right) -\hat \jmath\left(-16\sin^{2}\phi\sin\theta\right) \\ &\quad+\hat k\left(16\sin\phi\cos\phi\cos^{2}\theta +16\sin\phi\cos\phi\sin^{2}\theta \right) \\ &=\left\langle 16\sin^{2}\phi\cos\theta,16\sin^{2}\phi\sin\theta, 16\sin\phi\cos\phi\right\rangle \end{aligned} This is correctly oriented outward. On the hemisphere, the vector field, F=0,y4,0\vec{F}=\left\langle 0,\dfrac{y}{4},0\right\rangle, becomes F=0,sinϕsinθ,0 \vec{F}=\left\langle 0,\sin\phi\sin\theta,0\right\rangle Now we can compute the dot product: FN=16sin3ϕsin2θ \vec{F}\cdot\vec{N} =16\sin ^{3}\phi \sin ^{2}\theta and the surface integral hemiFdS=160π0πsin3ϕsin2θdθdϕ=160π(1cos2ϕ)sinϕdϕ0π1cos2θ2dθ=16[cosϕ+cos3ϕ3]0π[12(θsin2θ2)]0π=162(113)π2=323π\begin{aligned} \int_{\text{hemi}}\vec{F}\cdot d\vec{S} &=16\int_{0}^{\pi}\int_{0}^{\pi}\sin^{3}\phi\sin^{2}\theta\,d\theta\,d\phi \\ &=16\int_{0}^{\pi}(1-\cos^2\phi)\sin\phi\,d\phi \int_{0}^{\pi}\dfrac{1-\cos2\theta}{2}\,d\theta \\ &=16\left[-\cos\phi+\dfrac{\cos^3\phi}{3}\right]_{0}^{\pi} \left[\dfrac{1}{2}\left(\theta-\dfrac{\sin2\theta}{2}\right)\right]_{0}^{\pi} \\ &=16\cdot2\left(1-\dfrac{1}{3}\right)\dfrac{\pi}{2} =\dfrac{32}{3}\pi \end{aligned}

      Disk:  On the disk at y=0y=0, the vector field, F=0,y4,0\vec{F}=\left\langle 0,\dfrac{y}{4},0\right\rangle becomes F=0,0,0\vec{F}=\langle 0,0,0\rangle. So the integral is zero: diskFdS=0 \iint_{\text{disk}} \vec{F}\cdot d\vec{S}=0

      Total:  Adding the hemisphere and disk integrals, our total surface integral is: HFdV=HFdS=hemiFdS+diskFdS=323π\begin{aligned} \iiint_{H} &\vec{\nabla}\cdot\vec{F}\,dV =\iint_{\partial H}\vec{F}\cdot d\vec{S} \\ &=\iint_{\text{hemi}}\vec{F}\cdot d\vec{S} + \iint_{\text{disk}}\vec{F}\cdot d\vec{S} =\dfrac{32}{3}\pi \end{aligned}

      [×]
    3. Compute F\vec{\nabla}\cdot\vec{F} and the volume integral directly. Did Gauss' Theorem help to simplify the problem?

      Hint

      Always compute a divergence or curl in rectangular coordinates! Then convert it to the coordinates needed for the integral.

      [×]

      Answer

      HFdV=323π\displaystyle \iiint_{H} \vec{\nabla}\cdot\vec{F}\,dV= \dfrac{32}{3}\pi
      No, Gauss' Theorem did not simplify this problem because it is easier to compute the divergence of F\vec{F} and a volume integral.

      [×]

      Solution

      The divergence is F=0+14+0=14\vec{\nabla}\cdot\vec{F}=0+\dfrac{1}{4}+0=\dfrac{1}{4}. So the volume integral is: HFdV=0π0π0414ρ2sinϕdρdϕdθ=14(Volume of hemisphere)=141243π43=323π\begin{aligned} \iiint\limits_{H} &\vec{\nabla}\cdot\vec{F}\,dV =\int_{0}^{\pi}\int_{0}^{\pi}\int_{0}^{4} \dfrac{1}{4}\rho^{2}\sin\phi\,d\rho\,d\phi\,d\theta \\ &=\dfrac{1}{4}(\text{Volume of hemisphere}) =\dfrac{1}{4}\cdot\dfrac{1}{2}\cdot\dfrac{4}{3}\pi4^3 =\dfrac{32}{3}\pi \end{aligned} No, the volume integral was much easier than the surface integrals.

      [×]
  2. Compute the surface integral CFdS\displaystyle \iint_{\partial C} \vec{F}\cdot d\vec{S} where F=y,3y2,x2z\vec{F}=\langle y,3y^{2},x^{2}z\rangle over the cube, 0x30 \le x \le 3, 0y30 \le y \le 3, 0z30 \le z \le 3, oriented outward, by using Gauss' Theorem to simplify the problem.

    Cube Side Length 3

    Answer

    CFdS=CFdV=324\displaystyle \iint_{\partial C} \vec{F}\cdot d\vec{S} =\iiint_{C} \vec{\nabla}\cdot\vec{F}\,dV =324

    [×]

    Solution

    The problem can be simplified from 6 surface integrals to one volume integral by Gauss' Theorem: CFdS=CFdV \iint_{\partial C} \vec{F}\cdot d\vec{S} =\iiint_{C} \vec{\nabla}\cdot\vec{F}\,dV The divergence of F=y,3y2,x2z\vec{F}=\langle y,3y^{2},x^{2}z\rangle is F=0+6y+x2\vec{\nabla}\cdot\vec{F}=0+6y+x^2. The volume differential is: dV=dxdydzdV=dx\,dy\,dz.
    Thus the integral is: 030303(6y+x2)dxdydz=303[6xy+x33]x=03dy=303(18y+9)dy=3[9y2+9y]03=3(81+27)=324\begin{aligned} \int_{0}^{3}\int_{0}^{3}\int_{0}^{3} (6y+x^2)\,dx\,dy\,dz &=3\int_{0}^{3} \left[6xy+\dfrac{x^3}{3}\right]_{x=0}^{3}dy \\ &=3\int_{0}^{3} (18y+9)\,dy \\ &=3\left[9y^2+9y\right]_{0}^{3} \\ &=3\left( 81+27\right) =324 \end{aligned}

    cj  

    [×]
  3. Verify Gauss' Theorem CFdV=CFdS\displaystyle \iiint_C \vec\nabla\cdot\vec F\,dV =\iint_{\partial C} \vec F\cdot d\vec S for the vector field F=yz2,xz2,z(x2+y2)\vec{F}=\left\langle yz^{2},xz^{2},z\left( x^{2}+y^{2}\right) \right\rangle and the solid cone x2+y2z4\sqrt{x^{2}+y^{2}}\leq z\leq 4.

    Cone Height and Radius 4
    1. LHS: Volume Integral:  Compute the divergence in rectangular coordinates. Then choose a coordinate system for the integral, and express the divergence and dVdV in those coordinates.

      Answer

      CFdV=512π5\displaystyle \iiint_C \vec\nabla\cdot\vec F\,dV = \dfrac{512\pi }{5}

      [×]

      Solution

      On the left hand side, we first compute the divergence F=0+0+x2+y2\vec{\nabla}\cdot \vec{F}=0+0+x^{2}+y^{2}. In cylindrical coordinates, F=r2\vec{\nabla}\cdot \vec{F}=r^{2} and dV=rdrdθdzdV=r\,dr\,d\theta \,dz. Finally we compute the integral CFdV=02π04r4(r2)rdzdrdθ=2π04r4r3dzdr=2π04[r3z]z=r4dr=2π04(4r3r4)dr=2π[r4r55]04=2π44(145)=5125π\begin{aligned} \iiint_{C} &\vec{\nabla}\cdot\vec{F}\,dV =\int_{0}^{2\pi}\int_{0}^{4}\int_{r}^{4} (r^2)r\,dz\,dr\,d\theta \\ &=2\pi\int_{0}^{4}\int_{r}^{4} r^3\,dz\,dr =2\pi\int_{0}^{4} \left[r^3z\right]_{z=r}^{4}\,dr \\ &=2\pi\int_{0}^{4} \left(4r^3-r^4\right)\,dr =2\pi\left[r^{4}-\dfrac{r^5}{5}\right]_{0}^{4} \\ &=2\pi\cdot4^{4}\left(1-\dfrac{4}{5}\right) =\dfrac{512}{5}\pi \end{aligned}

      cj  

      [×]
    2. RHS: Surface Integral:  Parameterize each piece of the surface. Compute tangent and normal vectors, Evaluate F\vec{F} on each surface and compute the flux through each surface. Compare the answer with part (a).

      Answer

      CFdS=5125π\displaystyle \iint_C \vec{F}\cdot d\vec{S}=\dfrac{512}{5}\pi

      [×]

      Solution

      The boundary surface consists of a cone and a disk, oriented outward. Starting with the disk, we parameterize it as RDisk(r,θ)=(rcosθ,rsinθ,4) \vec{R}_{\text{Disk}}(r,\theta)=(r\cos\theta,r\sin\theta,4) The tangent vectors and normal are: er=cosθ,sinθ,0eθ=rsinθ,rcosθ,0\begin{aligned} &\vec{e}_{r}=\left\langle \cos \theta ,\sin \theta ,0\right\rangle \\ &\vec{e}_{\theta }=\left\langle -r\sin \theta ,r\cos \theta ,0\right\rangle \end{aligned} N=ı^(0ȷ^(0)+k^(rcos2θ+rsin2θ)=0,0,r\begin{aligned} \vec{N} &=\hat{\imath}(0-\hat{\jmath}(0)+\hat{k}(r\cos^2\theta+r\sin^2\theta) \\ &=\langle 0,0,r\rangle \end{aligned} Next we evaluate F=yz2,xz2,z(x2+y2)\vec{F}=\left\langle yz^{2},xz^{2},z\left( x^{2}+y^{2}\right) \right\rangle on the disk: FR=(16rsinθ,16rcosθ,4r2) \left.\vec{F}\right\vert_{\vec{R}} =(16r\sin\theta,16r\cos\theta,4r^{2}) Computing the dot product, FN=4r3\vec{F}\cdot \vec{N}=4r^{3}. So: DiskFdS=02π044r3drdθ=2π[r4]04=512π\begin{aligned} \iint_{\text{Disk}} \vec{F}\cdot d\vec{S} &=\int_{0}^{2\pi}\int_{0}^{4} 4r^{3}\,dr\,d\theta \\ &=2\pi\left[r^{4}\right] _{0}^{4} =512\pi \end{aligned} The next step is to do the same thing for the cone. It is parameterized as: Rcone=(rcosθ,rsinθ,r) \vec{R}_{\text{cone}}=\left(r\cos\theta,r\sin\theta,r\right) The tangent and normal vectors are: er=(cosθ,sinθ,1)eθ=(rsinθ,rcosθ,0) \begin{aligned} \vec{e}_{r}&=\left( \cos \theta ,\sin \theta ,1\right) \\ \vec{e}_{\theta }&=\left( -r\sin \theta ,r\cos \theta ,0\right) \end{aligned} N=(rcosθ,rsinθ,r) \vec{N}=(-r\cos\theta,-r\sin\theta,r) This is oriented up and in, but we need down and out, so we reverse the signs: N=(rcosθ,rsinθ,r) \vec{N}=(r\cos\theta,r\sin\theta,-r) Evaluating F=yz2,xz2,z(x2+y2)\vec{F}=\left\langle yz^{2},xz^{2},z\left( x^{2}+y^{2}\right) \right\rangle on the cone gives: FR=(r3sinθ,r3cosθ,r3) \left.\vec{F}\right\vert_{\vec{R}} =(r^{3}\sin\theta,r^{3}\cos\theta,r^{3}) Then the dot product is: FN=r4cosθsinθ+r4sinθcosθr4=2r4sinθcosθr4=r4sin2θr4\begin{aligned} \vec{F}\cdot\vec{N} &=r^{4}\cos\theta\sin\theta+r^{4}\sin\theta\cos\theta-r^{4} \\ &=2r^{4}\sin\theta\cos\theta-r^{4} \\ &=r^{4}\sin2\theta-r^{4} \end{aligned} So the integral is: ConeFdS=02π04(r4sin2θr4)drdθ=[cos2θ2θ]02π[r55]04=2π455=2048π5\begin{aligned} \iint_{\text{Cone}}\vec{F}\cdot d\vec{S} &=\int_{0}^{2\pi}\int_{0}^{4} (r^{4}\sin2\theta-r^{4})\,dr\,d\theta \\ &=\left[-\,\dfrac{\cos2\theta}{2}-\theta\right]_{0}^{2\pi} \left[\dfrac{r^{5}}{5}\right]_{0}^{4} \\ &=-2\pi\dfrac{4^{5}}{5} =-\dfrac{2048\pi }{5} \end{aligned} Finally, we sum the two integrals: CFdS=DiskFdS+ConeFdS=512π2048π5=5125π \begin{aligned} \iint_C \vec{F}\cdot d\vec{S}&=\iint_{\text{Disk}}\vec{F}\cdot d\vec{S} +\iint_{\text{Cone}}\vec{F}\cdot d\vec{S} \\ &=512\pi -\dfrac{2048\pi }{5} \\ &=\dfrac{512}{5}\pi \end{aligned}

      [×]
  4. Verify Gauss' Theorem VFdV=VFdS\displaystyle \iiint_V \vec\nabla\cdot\vec F\,dV =\iint_{\partial V} \vec F\cdot d\vec S for the vector field F=x3,y3,z3\vec F=\langle x^3,y^3,z^3\rangle and the hemisphere 0z16x2y2.0 \le z \le \sqrt{16-x^2-y^2 }.

    Hemisphere Radius 4
    1. LHS: Volume Integral:

      Hint

      Always compute a divergence or curl in rectangular coordinates! Then convert it to the coordinates needed for the integral.

      [×]

      Answer

      VFdV=6144π5 \displaystyle \iiint_V \vec\nabla\cdot\vec F\,dV=\dfrac{6144\pi}{5}

      [×]

      Solution

      First we compute the divergence of F\vec F and convert to spherical coordinates: F=3x2+3y2+3z2=3ρ2 \vec{\nabla}\cdot\vec{F}= 3x^2+3y^2+3z^2=3\rho^2 The Jacobian for spherical coordinates is dV=ρ2sinϕdV=\rho^2\sin\phi. Finally, we compute the integral on the hemisphere with bounds 0θ2π0 \le \theta \le 2\pi, 0ϕπ20 \le \phi \le \dfrac{\pi}{2}, and 0ρ40 \le \rho \le 4. VFdV=02π0π/2043ρ2(ρ2sin2ϕ)dρdϕdθ=6π0π/204ρ4sinϕdρdϕ=6π[15ρ5]04[cosϕ]0π/2=6π455(1)=6144π5 \begin{aligned} \iiint_V &\vec\nabla\cdot\vec F\,dV =\int_{0}^{2\pi}\int_{0}^{\pi/2}\int_{0}^{4} 3\rho^2(\rho^2\sin^2\phi)\,d\rho\,d\phi\,d\theta \\ &=6\pi\int_{0}^{\pi/2}\int_{0}^{4}\rho^4\sin\phi\,d\rho\,d\phi =6\pi\left[\dfrac{1}{5} \rho^5 \right]_0^4 [-\cos\phi]_{0}^{\pi/2} \\ &=6\pi\dfrac{4^5}{5}(1)=\dfrac{6144\pi}{5} \end{aligned}

      [×]
    2. RHS: Surface Integral:

      Hint

      Feel free to use the integrals: 02πsin4θdθ=02πcos4θdθ=34π \int_{0}^{2\pi}\sin^4\theta\,d\theta =\int_{0}^{2\pi}\cos^4\theta\,d\theta =\dfrac{3}{4}\pi 0π/2sin5ϕdϕ=0π/2cos5ϕdϕ=815 \int_0^{\pi/2}\sin^5\phi\,d\phi =\int_0^{\pi/2}\cos^5\phi\,d\phi =\dfrac{8}{15}

      [×]

      Answer

      VFdS=6144π5\displaystyle \iint_{\partial V} \vec F\cdot d\vec S = \dfrac{6144\pi}{5}

      [×]

      Solution

      The boundary surface consists of a hemisphere and a disk. We parametrize the hemisphere as: RHemi=(4sinϕcosθ,4sinϕsinθ,4cosϕ) \vec{R}_{\text{Hemi}}=\left(4\sin\phi\cos\theta,4\sin\phi\sin\theta, 4\cos\phi\right) The tangent vectors and normal are: eϕ=(4cosϕcosθ,4cosϕsinθ,4sinϕ)eθ=(4sinϕsinθ,4sinϕcosθ,0)N=(16sin2ϕcosθ,16sin2ϕsinθ,16cosϕsinϕ) \begin{aligned} \vec{e}_{\phi}&=(4\cos\phi\cos\theta, 4\cos\phi\sin\theta, -4\sin\phi)\\ \vec{e}_{\theta }&=(-4\sin\phi\sin\theta, 4\sin\phi\cos\theta, 0)\\ \vec{N}&=(16\sin^2\phi\cos\theta, 16\sin^2\phi\sin\theta, 16\cos\phi\sin\phi) \end{aligned} The normal correctly points upward. Evaluating the force F=x3,y3,z3\vec F=\langle x^3,y^3,z^3\rangle on the surface gives: FR=(64sin3ϕcos3θ,64sin3ϕsin3θ,64cos3ϕ) \left.\vec{F}\right\vert_{\vec{R}} =(64\sin^3\phi\cos^3\theta, 64\sin^3\phi\sin^3\theta, 64\cos^3\phi) Then their dot product is: FN=1024sin5ϕcos4θ+1024sin5ϕsin4θ+1024cos4ϕsinϕ \vec{F}\cdot\vec{N} =1024\sin^5\phi\cos^4\theta+1024\sin^5\phi\sin^4\theta +1024\cos^4\phi\sin\phi Thus the integral is: HemiFdS=102402π0π/2sin5ϕcos4θ+sin5ϕsin4θ+cos4ϕsinϕdϕdθ\begin{aligned} \iint_{\text{Hemi}}\vec{F}\cdot d\vec{S} =1024\int_{0}^{2\pi}\int_{0}^{\pi/2} &\sin^5\phi\cos^4\theta +\sin^5\phi\sin^4\theta \\ &+\cos^4\phi\sin\phi \,d\phi\,d\theta \end{aligned} Since the integrand is a sum of products and the limits are constants, We can separate the integral as: HemiFdS=10240π/2sin5ϕdϕ02πcos4θdθ+10240π/2sin5ϕdϕ02πsin4θdθ+10240π/2cos4ϕsinϕdϕ02π1dθ\begin{aligned} \iint_{\text{Hemi}}\vec{F}\cdot d\vec{S} &=1024\int_{0}^{\pi/2} \sin^5\phi\,d\phi \int_{0}^{2\pi} \cos^4\theta\,d\theta \\ &\quad+1024\int_{0}^{\pi/2} \sin^5\phi\,d\phi \int_{0}^{2\pi} \sin^4\theta\,d\theta \\ &\quad+1024\int_{0}^{\pi/2} \cos^4\phi\sin\phi\,d\phi \int_{0}^{2\pi} 1\,d\theta \end{aligned} We now use the standard integrals: 02πsin4θdθ=02πcos4θdθ=34π \int_{0}^{2\pi}\sin^4\theta\,d\theta =\int_{0}^{2\pi}\cos^4\theta\,d\theta =\dfrac{3}{4}\pi 0π/2sin5ϕdϕ=0π/2cos5ϕdϕ=815 \int_0^{\pi/2}\sin^5\phi\,d\phi =\int_0^{\pi/2}\cos^5\phi\,d\phi =\dfrac{8}{15} 0π/2cos4ϕsinϕdϕ=[cos5ϕ5]0π/2=15 \int_{0}^{\pi/2} \cos^4\phi\sin\phi\,d\phi =\left[-\,\dfrac{\cos^5\phi}{5}\right]_{0}^{\pi/2} =\dfrac{1}{5} So the integral reduces to: HemiFdS=1024(34π)(815)+1024(34π)(815)+1024(+15)(2π)=2048π5+2048π5+2048π5=6144π5\begin{aligned} \iint_{\text{Hemi}}\vec{F}\cdot d\vec{S} &=1024\left(\dfrac{3}{4}\pi\right)\left(\dfrac{8}{15}\right) +1024\left(\dfrac{3}{4}\pi\right)\left(\dfrac{8}{15}\right) \\ &\qquad+1024 \left(+\dfrac{1}{5}\right)(2\pi) \\ &=\dfrac{2048\pi}{5}+\dfrac{2048\pi}{5}+\dfrac{2048\pi}{5} =\dfrac{6144\pi}{5} \end{aligned}

      We parametrize the disk as: Rdisk=(rcosθ,rsinθ,0) \vec{R}_{\text{disk}}=(r\cos\theta,r\sin\theta,0) The tangent vectors and normal are: er=(cosθ,sinθ,0sinϕ)eθ=(rsinθ,rcosθ,0)N=(0,0,r) \begin{aligned} \vec{e}_{r}&=(\cos\theta,\sin\theta, 0\sin\phi)\\ \vec{e}_{\theta}&=(-r\sin\theta,r\cos\theta, 0)\\ \vec{N}&=(0,0,r) \end{aligned} We reverse the normal to point down: N=(0,0,r) \vec{N}=(0,0,-r) Evaluating the force F=x3,y3,z3\vec F=\langle x^3,y^3,z^3\rangle on the surface gives: FR=(r3cos3θ,r3sin3θ,0) \left.\vec{F}\right\vert_{\vec{R}} =(r^3\cos^3\theta,r^3\sin^3\theta,0) Then their dot product is: FN=0 \vec{F}\cdot\vec{N}=0 Thus the integral is: diskFdS=0 \iint_{\text{disk}}\vec{F}\cdot d\vec{S}=0 So the total surface integral is: VFdS=hemiFdS+diskFdS=6144π5+0=6144π5\begin{aligned} \iint_{\partial V} \vec F\cdot d\vec S &=\iint_{\text{hemi}} \vec F\cdot d\vec S +\iint_{\text{disk}} \vec F\cdot d\vec S \\[5pt] &= \dfrac{6144\pi}{5}+0=\dfrac{6144\pi}{5} \end{aligned} which agrees with the volume integral.

      [×]
  5. Verify Gauss' Theorem VFdV=VFdS\displaystyle \iiint_V \vec\nabla\cdot\vec F\,dV =\iint_{\partial V} \vec F\cdot d\vec S for the vector field F=xz2,yz2,z3\vec F=\langle xz^2,yz^2,z^3\rangle and the solid inside the cone x2+y2z8\sqrt{x^2+y^2 } \le z \le 8 but outside the cone 1+x2+y2z71+\sqrt{x^2+y^2 } \le z \le 7.

    Nested Cones
    1. LHS: Volume Integral:  Compute 2 volume integrals and subtract them.

      Answer

      VFdV=21392π\displaystyle\iiint_V \vec\nabla\cdot\vec F\,dV=21392\pi

      [×]

      Solution

      We calculate the divergence of the vector field: F=z2+z2+3z2=5z2 \vec\nabla\cdot\vec F = z^2+z^2+3z^2 = 5z^2 The Jacobian for cylindrical coordinates is rr. We first calculate the volume integral over the outside cone with limits rz8r \le z \le 8 , 0r80 \le r \le 8 , and 0θ2π0 \le \theta \le 2\pi: outerFdV=02π08r85z2rdzdrdθ=10π08[13z3]z=r8rdr=10π308512rr4dr=10π3[256r215r5]r=08=32768π\begin{aligned} \iiint\limits_\text{outer} &\vec\nabla\cdot\vec F\,dV = \int_{0}^{2\pi}\int_{0}^{8} \int_{r}^{8} 5z^2r\,dz\,dr\,d\theta \\ &=10\pi\int_{0}^{8} \left[\dfrac{1}{3}z^3\right]_{z=r}^{8}r\,dr =\dfrac{10\pi}{3}\int_{0}^{8} 512r-r^4 \,dr \\ &=\dfrac{10\pi}{3} \left[256r^2-\dfrac{1}{5}r^5 \right]_{r=0}^{8} =32768\pi \end{aligned} Next, we calculate the volume integral of the inner cone with limits 1+rz71+r \le z \le 7 , 0r60 \le r \le 6 , and 0θ2π0 \le \theta \le 2\pi, given as innerFdV=02π061+r75z2rdzdrdθ=10π06[13z3]z=r+17rdr=10π306(73(1+r)3)rdr=10π306(73(1+3r+3r2+r3))rdr=10π306342r3r23r3r4dr=10π3[171r2r334r415r5]06=11376π \begin{aligned} \iiint\limits_\text{inner} &\vec\nabla\cdot\vec F\,dV =\int_{0}^{2\pi}\int_{0}^{6}\int_{1+r}^{7} 5z^2r\,dz\,dr\,d\theta \\ &=10\pi\int_{0}^{6} \left[\dfrac{1}{3}z^3\right]_{z=r+1}^{7}r\,dr =\dfrac{10\pi}{3}\int_{0}^{6} (7^3-(1+r)^3)\,r\,dr \\ &=\dfrac{10\pi}{3}\int_{0}^{6} (7^3-(1+3r+3r^2+r^3))\,r\,dr \\ &=\dfrac{10\pi}{3}\int_{0}^{6} 342r-3r^2-3r^3-r^4\,dr \\ &=\dfrac{10\pi}{3} \left[171r^2-r^3-\dfrac{3}{4}r^4-\dfrac{1}{5}r^5 \right]_{0}^{6} =11376\pi \end{aligned} Finally, we subtract the integral over the inner cone from that for the outer cone, giving us our final answer of: VFdV=outerFdVinnerFdV=32768π11376π=21392π\begin{aligned} \iiint\limits_V \vec\nabla\cdot\vec F\,dV &=\iiint\limits_\text{outer} \vec\nabla\cdot\vec F\,dV -\iiint\limits_\text{inner} \vec\nabla\cdot\vec F\,dV \\ &=32768\pi-11376\pi=21392\pi \end{aligned}

      [×]
    2. RHS: Surface Integral:  Compute 4 surface integrals and properly combine them.

      Hint

      Be careful with the orientation of the normal vectors of the inner cone - they should point inward to the cone.

      [×]

      Answer

      VFdS=21392π\displaystyle \iint_{\partial V} \vec F\cdot d\vec S=21392\pi

      [×]

      Solution

      We parameterize the disk atop the outer cones as RDisk(r,θ)=(rcosθ,rsinθ,8) \vec{R}_{\text{Disk}}(r,\theta)=(r\cos\theta,r\sin\theta,8) The tangent vectors and normal are: er=cosθ,sinθ,0eθ=rsinθ,rcosθ,0N=0,0,r\begin{aligned} \vec{e}_{r}&=\left\langle \cos \theta ,\sin \theta ,0\right\rangle \\ \vec{e}_{\theta }&=\left\langle -r\sin \theta ,r\cos \theta ,0\right\rangle \\ \vec{N}&=\langle 0,0,r\rangle \end{aligned} Notice the normal is correctly oriented upward. Next we evaluate F=xz2,yz2,z3\vec{F}=\left\langle xz^{2},yz^{2},z^3\right\rangle on the disk: FR=(64rsinθ,64rcosθ,512) \left.\vec{F}\right\vert_{\vec{R}} =(64r\sin\theta,64r\cos\theta,512) Its dot product with the normal is: FN=512r\vec{F}\cdot \vec{N}=512r. So: OuterDiskFdS=02π08512rdrdθ=2π[256r2]08=32768π\begin{aligned} \iint_{\scriptstyle\text{Outer} \atop \scriptstyle\text{Disk}} \vec{F}\cdot d\vec{S} &=\int_{0}^{2\pi}\int_{0}^{8} 512r\,dr\,d\theta \\ &=2\pi\left[256r^2\right] _{0}^{8} =32768\pi \end{aligned} We then parametrize the inner disk as: RDisk(r,θ)=(rcosθ,rsinθ,7) \vec{R}_{\text{Disk}}(r,\theta)=(r\cos\theta,r\sin\theta,7) This results in the same normal of N=0,0,r\vec{N}=\langle 0,0,r\rangle. However, the normal is pointing outward when it should point inward. So we reverse the signs, yielding N=0,0,r\vec{N}=\langle 0,0,-r\rangle Next, we evaluate F=xz2,yz2,z3\vec{F}=\left\langle xz^{2},yz^{2},z^3\right\rangle on the disk: FR=(49rsinθ,49rcosθ,343) \left.\vec{F}\right\vert_{\vec{R}} =(49r\sin\theta,49r\cos\theta,343) and compute its dot product with the normal: FN=343r \vec{F}\cdot \vec{N}=-343r So: InnerDiskFdS=02π06343rdrdθ=π[343r2]06=12348π\begin{aligned} \iint_{\scriptstyle\text{Inner} \atop \scriptstyle\text{Disk}} \vec{F}\cdot d\vec{S} &=\int_{0}^{2\pi}\int_{0}^{6} -343r\,dr\,d\theta \\ &=\pi\left[-343r^2\right] _{0}^{6} =-12348\pi \end{aligned} The next step is to do the same thing for the outer cone. It is parameterized as: Rcone=(rcosθ,rsinθ,r) \vec{R}_{\text{cone}}=\left(r\cos\theta,r\sin\theta,r\right) The tangent and normal vectors are: er=(cosθ,sinθ,1)eθ=(rsinθ,rcosθ,0)N=(rcosθ,rsinθ,r)\begin{aligned} \vec{e}_{r}&=\left( \cos \theta ,\sin \theta ,1\right) \\ \vec{e}_{\theta }&=\left( -r\sin \theta ,r\cos \theta ,0\right) \\ \vec{N}&=(-r\cos\theta,-r\sin\theta,r) \end{aligned} This is oriented up and in, but we need down and out. So we reverse the signs: N=(rcosθ,rsinθ,r) \vec{N}=(r\cos\theta,r\sin\theta,-r) Evaluating F=xz2,yz2,z3\vec{F}=\left\langle xz^{2},yz^{2},z^3\right\rangle on the cone gives: FR=(r3cosθ,r3sinθ,r3) \left.\vec{F}\right\vert_{\vec{R}} =(r^{3}\cos\theta,r^{3}\sin\theta,r^{3}) Then the dot product is: FN=r4cos2θ+r4sin2θr4=0\begin{aligned} \vec{F}\cdot\vec{N} &=r^{4}\cos^2\theta+r^{4}\sin^2\theta-r^{4}=0 \end{aligned} So the surface integral for the outer cone is equal to zero. OuterConeFdS=0 \iint_{\scriptstyle\text{Outer} \atop \scriptstyle\text{Cone}} \vec{F}\cdot d\vec{S}=0 Next, we parametrize the inner cone as: Rcone=(rcosθ,rsinθ,1+r) \vec{R}_{\text{cone}}=\left(r\cos\theta,r\sin\theta,1+r\right) The tangent and normal vectors are: er=(cosθ,sinθ,1)eθ=(rsinθ,rcosθ,0)N=(rcosθ,rsinθ,r)\begin{aligned} \vec{e}_{r}&=\left( \cos \theta ,\sin \theta ,1\right) \\ \vec{e}_{\theta }&=\left( -r\sin \theta ,r\cos \theta ,0\right) \\ \vec{N}&=(-r\cos\theta,-r\sin\theta,r) \end{aligned} This is oriented up and in, which is correct. Evaluating F=xz2,yz2,z3\vec{F}=\left\langle xz^{2},yz^{2},z^3\right\rangle on the cone gives: FR=(rcosθ(1+r)2,rsinθ(1+r)2,(1+r)3) \left.\vec{F}\right\vert_{\vec{R}} =(r\cos\theta(1+r)^2,r\sin\theta(1+r)^2,(1+r)^3) Then the dot product is: FN=r2cos2θ(1+r)2r2sin2θ(1+r)2+r(1+r)3=r2(1+r)2+r(1+r)3=r3+2r2+r\begin{aligned} \vec{F}\cdot\vec{N} &=-r^{2}\cos^2\theta(1+r)^2-r^{2}\sin^2\theta(1+r)^2+r(1+r)^{3} \\ &=-r^{2}(1+r)^2+r(1+r)^{3} \\ &=r^3+2r^2+r \end{aligned} So the integral for the inner cone is: InnerConeFdS=02π06r3+2r2+rdrdθ=2π[14r4+23r3+12r2]06=972π\begin{aligned} \iint_{\scriptstyle\text{Inner} \atop \scriptstyle\text{Cone}} \vec{F}\cdot d\vec{S} &=\int_{0}^{2\pi}\int_{0}^{6} r^3+2r^2+r\,dr\,d\theta \\ &=2\pi \left[\dfrac{1}{4}r^4+\dfrac{2}{3}r^3 +\dfrac{1}{2}r^2\right]_{0}^{6} =972\pi \end{aligned} Summing our surface integrals, we see that: VFdS=OuterDisk+OuterCone+InnerDisk+InnerCone=32768π+012348π0+972π=21392π\begin{aligned} \iint_{\partial V} \vec{F}\cdot d\vec{S} &=\iint_{\scriptstyle\text{Outer} \atop \scriptstyle\text{Disk}} +\iint_{\scriptstyle\text{Outer} \atop \scriptstyle\text{Cone}} +\iint_{\scriptstyle\text{Inner} \atop \scriptstyle\text{Disk}} +\iint_{\scriptstyle\text{Inner} \atop \scriptstyle\text{Cone}} \\ &=32768\pi+0 - 12348\pi-0+972\pi=21392\pi \end{aligned} which agrees with the volume integral.

      [×]
  6. PY: Checked to here.
  7. Prove the QQ piece of Gauss' Theorem for a rectangular box.

    Hint

    You are trying to prove that VyQdV=VQdzdx \iiint_V \partial_yQ\,dV =\iint_{\partial V} Q\,dz\,dx

    [×]

    Solution

    We prove VyQdV=VQdzdx \iiint_V \partial_y Q\,dV =\iint_{\partial V} Q\,dz\,dx for the simple case of a rectangular box with bounds axba \le x \le b and cydc \le y \le d and ezfe \le z \le f. To carry out the proof, we evaluate the left and right hand sides to see they are equal.

    LHS: To compute the integral on the left, we apply the Fundamental Theorem of Calculus to the yy-integral while xx and zz are held constant: VyQdV=efcdabyQ(x,y,z)dxdzdx=efabQ(x,d,z)Q(x,c,z)dzdx\begin{aligned} \iiint_V \partial_yQ\,dV &=\int_e^f\int_c^d\int_a^b \partial_yQ(x,y,z)\,dx\,dz\,dx \\ &=\int_e^f\int_a^b Q(x,d,z)-Q(x,c,z)\,dz\,dx \end{aligned} We now want to see that this is the same as the integral on the right.

    RHS: We know that V\partial V is the surface of the box, which has 66 faces. To evaluate the right side we need to parameterize all six faces and find their normal vectors. In each case, we take N=eu×ev\vec N=\vec e_u\times\vec e_v. R1(u,v)=(a,v,u)N1=ijk001010=(1,0,0)dxdz=0R2(u,v)=(b,u,v)N2=ijk010001=(1,0,0)dxdz=0R3(u,v)=(u,c,v)N3=ijk100001=(0,1,0)dxdz=dudvR4(u,v)=(v,d,u)N4=ijk001100=(0,1,0)dxdz=dudvR5(u,v)=(v,u,e)N5=ijk010100=(0,0,1)dxdz=0R6(u,v)=(u,v,f)N6=ijk100010=(0,0,1)dxdz=0\begin{aligned} \vec R_1(u,v)&=(a,v,u) \quad \vec N_1= \begin{vmatrix} i & j & k \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} =(-1,0,0) \quad\, dx\,dz=0 \\ \vec R_2(u,v)&=(b,u,v) \quad \vec N_2= \begin{vmatrix} i & j & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} =(1,0,0) \qquad dx\,dz=0 \\ \vec R_3(u,v)&=(u,c,v) \quad \vec N_3= \begin{vmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} =(0,-1,0) \quad\, dx\,dz=-du\,dv \\ \vec R_4(u,v)&=(v,d,u) \quad \vec N_4= \begin{vmatrix} i & j & k \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} =(0,1,0) \qquad dx\,dz=du\,dv \\ \vec R_5(u,v)&=(v,u,e) \quad \vec N_5= \begin{vmatrix} i & j & k \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} =(0,0,-1) \quad\, dx\,dz=0 \\ \vec R_6(u,v)&=(u,v,f) \quad \vec N_6= \begin{vmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} =(0,0,1) \qquad dx\,dz=0 \end{aligned} Notice that we have chosen the order of uu and vv in each parametrization so that the normal N\vec N points out of the surface, i.e. toward

    negative   xx   when   x=ax=a   and   positive   xx   when   x=bx=b

    negative   yy   when   y=cy=c   and   positive   yy   when   y=dy=d

    negative   zz   when   z=ez=e   and   positive   zz   when   z=fz=f

    Further, the value of dxdzdx\,dz for each parametrization is found from the equation dS=Ndudv=(dydz,dzdx,dxdy) d\vec S=\vec N\,du\,dv=(dy\,dz,dz\,dx,dx\,dy) Since dxdz=0dx\,dz=0 for 44 of the 66 surfaces, the only surfaces that contribute to the right side of Gauss' Theorem are surfaces R3(u,v)\vec R_3(u,v) and R4(u,v)\vec R_4(u,v). Thus we evaluate the right side by summing the two surface integrals: VQdzdx=R3Qdzdx+R4Qdzdx=efabQ(u,c,v)dudv+abefQ(v,d,u)dudv\begin{aligned} \iint_{\partial V} Q\,dz\,dx &=\iint_{\vec R_3 } Q\,dz\,dx+\iint_{\vec R_4 } Q\,dz\,dx \\ &=-\int_e^f\int_a^b Q(u,c,v)\,du\,dv+\int_a^b\int_e^f Q(v,d,u)\,du\,dv \end{aligned} Notice that on the surface R3\vec R_3 the vv variable is the value of zz so that evfe \le v \le f and on the surface R4\vec R_4 the vv variable is the value of xx so that cvdc \le v \le d and the opposite is true for uu.

    By Fubini's theorem, we can interchange the order of the differentials of integration on the second integral if we also interchange the order of the limits on the integrals VQdzdx=efabQ(u,c,v)dvdu+efabQ(u,d,v)dvdu \iint_{\partial V} Q\,dz\,dx =-\int_e^f\int_a^b Q(u,c,v)\,dv\,du+\int_e^f\int_a^b Q(u,d,v)\,dv\,du Finally, in the first integral, we replace the dummy variables vv and uu by zz and xx respectively and in the second integral, we replace the dummy variables uu and vv by xx and zz respectively: VQdzdx=efcdQ(x,c,z)dzdx+efcdQ(x,d,z)dzdx \iint_{\partial V} Q\,dz\,dx =-\int_e^f\int_c^d Q(x,c,z)\,dz\,dx+\int_e^f\int_c^d Q(x,d,z)\,dz\,dx This is the same result we found on the left side. So the theorem is proved for the case that F=Q,0,0\vec F=\langle Q,0,0\rangle.

    [×]
  8. Prove the TT piece of Gauss' Theorem for a rectangular box.

    Hint

    You are trying to prove that VzTdV=VTdxdy \iiint_V \partial_zT\,dV =\iint_{\partial V} T\,dx\,dy

    [×]

    Solution

    This solution has been omitted for the benefit of the poor professors who have to assign homework to you reprobates. We encourage you to attempt it on your own.

    [×]
  9. Challenge Problem Reprove the PP piece of Gauss' Theorem but for a curvilinear rectangular box given in the curvilinear coordinates R(u,v,w)=x(u,v,w),y(u,v,w),z(u,v,w) \vec R(u,v,w)=\langle x(u,v,w),y(u,v,w),z(u,v,w)\rangle by aubcvdewf a \le u \le b \qquad c \le v \le d \qquad e \le w \le f

    Hint

    You are trying to prove that VxPdV=VPdydx \iiint_V \partial_xP\,dV =\iint_{\partial V} P\,dy\,dx On the left you will need the Jacobian determinant J=(x,y,z)(u,v,w)J=\left|\dfrac{\partial(x,y,z)}{\partial(u,v,w)}\right|. Assume the coordinates are a right handed system, so you can ignore the absolute value.
    On the right, you will need to parametrize each surface. For example the surface with u=au=a is: R(a,v,w)=x(a,v,w),y(a,v,w),z(a,v,w) \vec R(a,v,w)=\langle x(a,v,w),y(a,v,w),z(a,v,w)\rangle

    [×]

    Solution

    This solution will take a serious amount of work.

    [×]
  10. Compute PFdS\displaystyle \iint_{\partial P} \vec{F}\cdot d\vec{S} for F=xy2,yx2,z(x2+y2)\vec{F}=\left\langle xy^{2},yx^{2},z( x^{2}+y^{2})\right\rangle over the complete surface of the solid paraboloid, PP, above z=x2+y2z=x^{2}+y^{2} below the plane z=4z=4, oriented outward.

    Answer

    PFdS=643π\displaystyle \iint_{\partial P} \vec{F}\cdot d\vec{S} =\dfrac{64}{3}\pi

    [×]

    Solution

    By Gauss' Theorem, PFdS=PF dV\displaystyle \iint_{\partial P} \vec{F}\cdot d\vec{S} =\iiint_P\vec{\nabla}\cdot \vec{F}\ dV. Using cylindrical coordinates: F=y2+x2+x2+y2=2r2\vec{\nabla}\cdot \vec{F}=y^{2}+x^{2}+x^{2}+y^{2}=2r^{2}. The Jacobian for cylindrical coordinates is: dV=rdrdθdzdV=r\,dr\,d\theta \,dz. The range for zz is r2z4r^{2} \le z \le 4 where 0r20 \le r \le 2 and 0θ2π0 \le \theta \le 2\pi, So the integral is: PFdS=02π02r242r3dzdrdθ=2π02[2r3z]z=r24dr=2π02(8r32r5)dr=2π[2r4r63]02=2π(32643)=643π \begin{aligned} \iint_{\partial P} &\vec{F}\cdot d\vec{S} =\int_{0}^{2\pi}\int_{0}^{2}\int_{r^{2}}^{4} 2r^{3}\,dz\,dr\,d\theta \\ &=2\pi \int_{0}^{2} \left[2r^{3}z\right]_{z=r^{2}}^{4}\,dr =2\pi \int_{0}^{2} \left(8r^{3}-2r^{5}\right)\,dr \\ &=2\pi \left[2r^{4}-\dfrac{r^{6}}{3}\right]_{0}^{2} =2\pi \left( 32-\dfrac{64}{3}\right) =\dfrac{64}{3}\pi \end{aligned}

    [×]
  11. Consider an electric field E=xx2+y2+z2,yx2+y2+z2,zx2+y2+z2\displaystyle \vec{E}=\left\langle \dfrac{x}{x^{2}+y^{2}+z^{2}}, \dfrac{y}{x^{2}+y^{2}+z^{2}}, \dfrac{z}{x^{2}+y^{2}+z^{2}} \right\rangle on the sphere of radius ρ=2\rho =2.

    1. Find the charge density, δe\delta_{e}, and use it to find the total charge inside the sphere, Q=SδedV\displaystyle Q=\iiint_S \delta_{e}\,dV.

      Answer

      δe=14πρ2 \delta _{e}=\dfrac{1}{4\pi \rho ^{2}}Q=2Q=2

      [×]

      Solution

      To find the charge density, we will use the differential version of Gauss' Law, δe=14πE\delta_{e}=\dfrac{1}{4\pi}\vec{\nabla}\cdot\vec{E}. So we need to compute the divergence of E\vec{E}: E=x2+y2+z2(x2+y2+z2)2+x2y2+z2(x2+y2+z2)2+x2+y2z2(x2+y2+z2)2=x2+y2+z2(x2+y2+z2)2=1x2+y2+z2\begin{aligned} \vec{\nabla}\cdot\vec{E} &=\dfrac{-x^2+y^2+z^2}{(x^2+y^2+z^2)^2} +\dfrac{ x^2-y^2+z^2}{(x^2+y^2+z^2)^2} +\dfrac{ x^2+y^2-z^2}{(x^2+y^2+z^2)^2} \\ &=\dfrac{x^2+y^2+z^2}{(x^2+y^2+z^2)^2} =\dfrac{1}{x^2+y^2+z^2} \end{aligned} By Gauss' Law, the charge density is: δe=14π(x2+y2+z2)=14πρ2 \delta _{e}=\dfrac{1}{4\pi\left(x^{2}+y^{2}+z^{2}\right)} =\dfrac{1}{4\pi\rho ^{2}} To find QQ, we need to use spherical coordinates and integrate over the volume: Q=Vρe dV=02π0π0214πρ2ρ2sinϕdρdϕdθ=2π4π02dρ0πsinϕdϕ=12(2)[cosϕ]0π=(1)(1)=2\begin{aligned} Q&=\iiint_{V}\rho _{e}\ dV =\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{2} \dfrac{1}{4\pi\rho^{2}}\rho^{2}\sin\phi\,d\rho\,d\phi\,d\theta \\ &=\dfrac{2\pi}{4\pi}\int_{0}^{2}\,d\rho\int_{0}^{\pi}\sin\phi\,d\phi =\dfrac{1}{2}(2)\left[-\cos \phi\right]_{0}^{\pi} \\ &=-(-1)-(-1)=2 \end{aligned}

      [×]
    2. Find the total charge, Q=14πSEdS\displaystyle Q=\dfrac{1}{4\pi }\iint_{\partial S}^{}\vec{E}\cdot d\vec{S}. Do both versions of Gauss' Law give the same answer?

      Answer

      Q=2Q=2   So the two versions of Gauss' Law give the same answer.

      [×]

      Solution

      For this we will use the integral version of Gauss' Law, Q=14πSEdS\displaystyle Q=\dfrac{1}{4\pi}\iint_{\partial S}^{}\vec{E}\cdot d\vec{S}, where the boundary surface is the sphere of radius 22 which we parametrize as: R(ϕ,θ)=(2sinϕcosθ,2sinϕsinθ,2cosϕ) \vec{R}(\phi,\theta) =(2\sin\phi\cos\theta,2\sin\phi\sin\theta,2\cos\phi) The normal vector is the cross product of the tangent vectors: N=eϕ×eθ=ı^ȷ^k^2cosϕcosθ2cosϕsinθ2sinϕ2sinϕsinθ2sinϕcosθ0=ı^(4sin2ϕcosθ)ȷ^(4sin2ϕsinθ)+k^(4sinϕcosϕcos2θ+4sinϕcosϕsin2θ)=4sin2ϕcosθ,4sin2ϕsinθ,4sinϕcosϕ\begin{aligned} \vec{N}&=\vec{e}_{\phi}\times\vec{e}_{\theta} =\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2\cos\phi\cos\theta & 2\cos\phi\sin\theta & -2\sin\phi \\ -2\sin\phi\sin\theta & 2\sin\phi\cos\theta & 0 \end{vmatrix} \\ &=\hat{\imath}(4\sin^{2}\phi\cos\theta) -\hat{\jmath}(-4\sin^{2}\phi\sin\theta) \\ &\quad+\hat{k}(4\sin\phi\cos\phi\cos^2\theta +4\sin\phi\cos\phi\sin^2\theta) \\ &=\left\langle 4\sin^2\phi\cos\theta,4\sin^2\phi\sin\theta, 4\sin\phi\cos\phi\right\rangle \end{aligned} We evaluate the electric field E\vec{E} on the surface: E=xx2+y2+z2,yx2+y2+z2,zx2+y2+z2=12sinϕcosθ,sinϕsinθ,cosϕ\begin{aligned} \vec{E} &=\left\langle \dfrac{x}{x^2+y^2+z^2}, \dfrac{y}{x^2+y^2+z^2}, \dfrac{z}{x^2+y^2+z^2}\right\rangle \\ &=\dfrac{1}{2}\left\langle \sin\phi\cos\theta,\sin\phi\sin\theta, \cos\phi\right\rangle \end{aligned} Next we take the dot product: EN=12(4sin3ϕcos2θ+4sin3sin2θ+4sinϕcos2ϕ)=2sin3ϕ+2sinϕcos2ϕ=2sinϕ \begin{aligned} \vec{E}\cdot\vec{N} &=\dfrac{1}{2}(4\sin^3\phi\cos^2\theta+4\sin^3\sin^2\theta +4\sin\phi\cos^2\phi) \\ &=2\sin^3\phi+2\sin\phi\cos^2\phi =2\sin\phi \end{aligned} Then we integrate: SEdS=02π0πENdϕdθ=02π0π2sinϕdϕdθ=2(2π)[cosϕ]0π=8π\begin{aligned} \iint_{\partial S}^{}\vec{E}\cdot d\vec{S} &=\int_{0}^{2\pi}\int_{0}^{\pi} \vec{E}\cdot\vec{N}\,d\phi\,d\theta \\ &=\int_{0}^{2\pi}\int_{0}^{\pi} 2\sin\phi\,d\phi\,d\theta \\ &=2\left( 2\pi \right) \left[-\cos \phi \right] _{0}^{\pi } =8\pi \end{aligned} Finally, we use the integral version of Gauss' Law to compute the total charge: Q=14πSEdS=14π8π=2 Q=\dfrac{1}{4\pi}\iint_{\partial S}^{}\vec{E}\cdot d\vec{S} =\dfrac{1}{4\pi}8\pi=2 This agrees with our other method of calculating QQ.

      [×]
  12. PY: Checked 7 - 10.

    Review Exercises

    Evaluate using any appropriate method.

  13. xxx

    Hint

    xxx

    [×]

    Answer

    xxx

    [×]

    Solution

    xxx

    [×]
  14. xxx
    1. xxx

      Answer

      xxx

      [×]

      Solution

      xxx

      [×]
    2. xxx

      Answer

      xxx

      [×]

      Solution

      xxx

      [×]

© 2025 MYMathApps

Supported in part by NSF Grant #1123255